WN Blog 011 – Cisco Catalyst 9800-CL – Redundancy HA SSO (GUI and Basics)

4 min read

Hey!

Welcome to another one of our blogs on configuring the new Cisco Catalyst 9800 WLC.

This time we are going to take you through configuring 2 x C9800-CLs for redundancy HA SSO. 

First here is an overview of my home lab setup:

Matts Lab

I currently have 2 x ESXi servers and a C9800CL on each of them – what it is important to point out below here is that I have VLAN 12 configured to use for my L2 redundancy ports between the WLCs.

ESXI Servers vSwitch Config

Interface Gigabit Ethernet 3 will be used for the L2 HA in this setup:

ESXI C9800 Network adapters

Just want to point out here that at this stage we have 3 x interfaces – Gigabit Ethernet 1 – 3:

C9800s Ethernet Interfaces

I then began the redundancy configuration on both of the WLCs.

On the primary WLC I specified the “local IP” as the IP address I had just set up on VLAN 12 and the remote IP address of the secondary WLC that I had just created on VLAN 12.

HA interface I have used Gigabit Ethernet 3.

I wanted the WLC on the left to be the primary WLC so I set the active chassis priority to higher than the secondary WLC on the right:

C9800s Redundancy Config

After I applied the configuration I then saved the config and reloaded both of the WLCs at the same time, crossed my fingers and prayed to the wireless networking gods! ๐Ÿ˜€

C9800s Save & Reload

A few minutes later…

C9800s Successfully in Redundancy HA SSO 1

We can see now that the WLCs have rebooted and successfully formed an HA SSO pair. You can now also see a new dropdown on the dashboard to flip between active and standby stats:

C9800s Successfully in Redundancy HA SSO 2

Standby stats:

C9800s Successfully in Redundancy HA SSO 3

Note the G3 interface is gone after forming a HA:

C9800 No Gigabit Ethernet 3
C9800 No Gigabit Ethernet 3 GUI

Also note that HA/SSO is required to take advantage of a very nice new featur of the C9800 series WLCs, which is the “always on” feature from its hitless upgrades.

Here is how it works:

  • The controller automatically selects groups of APs that can be upgraded, while other nearby APs will still provide coverage to the clients
    • RRM is used to determine AP neighbors that can provide redundant client coverage
    • The aggressiveness of these groupings is configurable.
      • You can have many groups (few APs per group), with very minimal coverage impact, but it will take a long time to complete.
      • Or you can have fewer groups (more APs per group) with a greater chance for coverage impact but will complete much more quickly
  • The secondary Controller is upgraded to the new software version and rebooted
  • The controller uses 802.11v to shuffle clients away from the APs in the first group so that they can be rebooted without impacting the clients
    • Clients not supporting 802.11v will get ungracefully kicked off the AP
  • The controller moves those APs to the new controller, thus upgrading the AP code when they join
    • Once upgraded and controller-joined, clients may join these APs
  • The same process is automatically repeated for all successive groups of APs
  • Once all APs are moved to the N+1 controller, the code is upgraded on the primary controller and it is rebooted
  • Once the primary controller is back online, the APs can optionally be moved back to the primary controller

There you go – that is how you set up and configure your virtual C9800CLs for HA/SSO – hopefully this blog saves you a bit of time if you ever need to do something similar!

PS. Shout out to Ashley Georgeson who helped with this ๐Ÿ™‚

Share blog

Share on facebook
Share on twitter
Share on linkedin
Share on email

1 thought on “WN Blog 011 – Cisco Catalyst 9800-CL – Redundancy HA SSO (GUI and Basics)”

  1. Always enjoy getting my hands dirty Matt! Also well spotted with the incorrect Cisco configuration guide for the CLI commands for ‘chassis _redundancy_ ha-interface’. My take is that this config looks pretty similar to the SSO redundancy configuration for 3850’s/9300’s which makes total sense for unified IOS-XE code.

Comments are closed.

Blog

This WiFi Ninjas Blog archive consists of all the blogs we have ever written!